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Preface

After twelve editions and over four decades, Mathematical Ideas continues to be 
one of the most popular textbooks in liberal arts mathematics education. We are 
proud to present the thirteenth edition of a text that offers non-physical science 
students a practical coverage that connects mathematics to the world around them. 
It is a flexible text that has evolved alongside changing trends but remains steadfast 
to its original objectives.

Mathematical Ideas is written with a variety of students in mind. It is well suited for 
several courses, including those geared toward the aforementioned liberal arts audi-
ence and survey courses in mathematics or finite mathematics. Students taking these 
courses will pursue careers in nursing and healthcare, the construction trades, commu-
nications, hospitality, information technology, criminal justice, retail management and 
sales, computer programming, political science, school administration, and a myriad of 
other careers. Accordingly, we have chosen to increase our focus on showcasing how 
the math in this course will be relevant in this wide array of career options.

	 •	 Chapter openers now address how the chapter topics can be applied within the 
context of work and future careers.

	 •	 We made sure to retain the hundreds of examples and exercises from the previous 
edition that pertain to these interests.

	 •	 Every chapter also contains the brand new When Will I Ever Use This? features 
that help students connect mathematics to the workplace.

Interesting and mathematically pertinent movie and television applications and 
references are still interspersed throughout the chapters.

Ample topics are included for a two-term course, yet the variety of topics and 
flexibility of sequence makes the text suitable for shorter courses as well. Our main 
objectives continue to be comprehensive coverage, appropriate organization, clear 
exposition, an abundance of examples, and well-planned exercise sets with numer-
ous applications.

New to This Edition

	 •	 New chapter openers connect the mathematics of the chapter to a particular  
career area, or in some cases, to an everyday life situation that will be important 
to people in virtually any career.

	 •	 When Will I Ever Use This? features in each chapter also connect chapter topics 
to career or workplace situations and answer that age-old question.

	 •	 Career applications have taken on greater prominence.

	 •	 Every section of every chapter now begins with a list of clear learning objectives 
for the student.

	 •	 An extensive summary at the end of each chapter includes the following  
components.

		  °  A list of Key Terms for each section of the chapter

		  ° � New Symbols, with definitions, to clarify newly introduced symbols

		  ° � Test Your Word Power questions that allow students to test their knowledge 
of new vocabulary

		  ° � A Quick Review that gives a brief summary of concepts covered in the chapter, 
along with examples illustrating those concepts

	 •	 All exercise sets have once again been updated, with over 1000 new or modified 
exercises, many with a new emphasis on career applications.
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	 •	 Since Intermediate Algebra is often a prerequisite for the liberal arts course, the 
algebra chapters have been streamlined to focus in on key concepts, many of 
which will aid in comprehension of other chapters’ content.

	 •	 The presentation has been made more uniform whenever clarity for the reader 
could be served.

	 •	 The general style has been freshened, with more pedagogical use of color, new 
photos and art, and opening of the exposition.

	 •	 NEW! An Integrated Review MyMathLab course option provides embedded 
review of select developmental topics in a Ready to Go format with assignments 
pre-assigned. This course solution can be used in a co-requisite course model, or 
simply to help under-prepared students master prerequisite skills and concepts.

	 •	 Expanded online resources

		  ° � NEW! Interactive, conceptual videos with assignable MML questions walk stu-
dents through a concept and then ask them to answer a question within the vid-
eo. If students answer correctly, the concept is summarized. If students select 
one of the two incorrect answers, the video continues focusing on why students 
probably selected that answer and works to correct that line of thinking and 
explain the concept. Then students get another chance to answer a question to 
prove mastery.

		  ° � NEW! Learning Catalytics  This student engagement, assessment and class-
room intelligence system gives instructors real-time feedback on student learning.

		  ° � NEW! “When Will I Ever Use This?” videos bring the ideas in the feature to 
life in a fun, memorable way.

		  ° � NEW! An Integrated Review MyMathLab course option provides an embed-
ded review of selected developmental topics. Assignments are pre-assigned in 
this course, which includes a Skills Check quiz on skills that students will need 
in order to learn effectively at the chapter level. Students who demonstrate mas-
tery can move on to the Mathematical Ideas content, while students who need 
additional review can polish up their skills by using the videos supplied and can 
benefit from the practice they gain from the Integrated Review Worksheets. 
This course solution can be used either in a co-requisite course model, or simply 
to help underprepared students master prerequisite skills and concepts.

		  ° � The Trigonometry and Metrics content that was previously in the text is now 
found in the MyMathLab course, including the assignable MML questions.

		  ° � Extensions previously in the text are now found in the MyMathLab course, 
along with any assignable MML questions.

Overview of Chapters

	 •	 Chapter 1 (The Art of Problem Solving) introduces the student to inductive 
reasoning, pattern recognition, and problem-solving techniques. We continue to 
provide exercises based on the monthly Calendar from Mathematics Teacher and 
have added new ones throughout this edition. The new chapter opener recounts 
the solving of the Rubik’s cube by a college professor. The When Will I Ever Use 
This? feature (p. 31) shows how estimation techniques may be used by a group 
home employee charged with holiday grocery shopping.

	 •	 Chapter 2 (The Basic Concepts of Set Theory) includes updated examples and 
exercises on surveys. The chapter opener and the When Will I Ever Use This? 
feature (p. 73) address the future job outlook for the nursing profession and the 
allocation of work crews in the building trade, respectively.
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	 •	 Chapter 3 (Introduction to Logic) introduces the fundamental concepts of in-
ductive and deductive logic. The chapter opener connects logic with fantasy lit-
erature, and new exercises further illustrate this relationship. A new For Further 
Thought (p. 99) and new exercises address logic gates in computers. One When 
Will I Ever Use This? feature (p. 108) connects circuit logic to the design and in-
stallation of home monitoring systems. Another (p. 128) shows a pediatric nurse 
applying a logical flowchart and truth tables to a child’s vaccination protocol.

	 •	 Chapter 4 (Numeration Systems) covers historical numeration systems, includ-
ing Egyptian, Roman, Chinese, Babylonian, Mayan, Greek, and Hindu-Arabic 
systems. A connection between base conversions in positional numeration sys-
tems and computer network design is suggested in the new chapter opener and 
illustrated in the When Will I Ever Use This? feature (p. 168), a new example, 
and new exercises.

	 •	 Chapter 5 (Number Theory) presents an introduction to the prime and com-
posite numbers, the Fibonacci sequence, and a cross section of related historical 
developments, including the fairly new topic of “prime number splicing.” The 
largest currently known prime numbers of various categories are identified, and 
recent progress on Goldbach’s conjecture and the twin prime conjecture are 
noted. The chapter opener and one When Will I Ever Use This? feature (p. 189) 
apply cryptography and modular arithmetic to criminal justice, relating to cyber 
security. Another When Will I Ever Use This? feature (p. 205) shows how a nurse 
may use the concept of least common denominator in determining proper drug 
dosage.

	 •	 Chapter 6 (The Real Numbers and Their Representations) introduces some of 
the basic concepts of real numbers, their various forms of representation, and 
operations of arithmetic with them. The chapter opener and When Will I Ever 
Use This? feature (p. 273) connect percents and basic algebraic procedures to 
pricing, markup and discount, student grading, and market share analysis, as 
needed by a retail manager, a teacher, a salesperson, a fashion merchandiser, 
and a business owner.

	 •	 Chapter 7 (The Basic Concepts of Algebra) can be used to present the basics of 
algebra (linear and quadratic equations, applications, exponents, polynomials, 
and factoring) to students for the first time, or as a review of previous courses. 
The chapter opener connects proportions to an automobile owner’s determina-
tion of fuel mileage, and the When Will I Ever Use This? feature (p. 330) relates 
inequalities to a test-taker’s computation of the score needed to maintain a cer-
tain grade point average.

	 •	 Chapter 8 (Graphs, Functions, and Systems of Equations and Inequalities) is 
the second of our two algebra chapters. It continues with graphs, equations, and 
applications of linear, quadratic, exponential, and logarithmic functions and 
models, along with systems of equations. The chapter opener shows how an au-
tomobile owner can use a linear graph to relate price per gallon, amount pur-
chased, and total cost. The When Will I Ever Use This? feature (p. 416) connects 
logarithms with the interpretation of earthquake reporting in the news.

	 •	 Chapter 9 (Geometry) covers elementary plane geometry, transformational ge-
ometry, basic geometric constructions, non-Euclidean geometry, and chaos and 
fractals. Section 9.7 now includes projective geometry. At reviewer request, the 
discussion of networks (the Königsberg Bridge problem) has been moved to 
Chapter 14 (Graph Theory). The chapter opener and one When Will I Ever Use 
This? feature (p. 497) connect geometric volume formulas to a video game pro-
grammer’s job of designing the visual field of a game screen. A second When Will 
I Ever Use This? feature (p. 470) relates right triangle geometry to a forester’s 
determining of safe tree-felling parameters.



	 •	 Chapter 10 (Counting Methods) focuses on elementary counting techniques, in 
preparation for the probability chapter. The chapter opener relates how a res-
taurateur used counting methods to help design the sales counter signage in a 
new restaurant. The When Will I Ever Use This? feature (p. 534) describes an 
entrepreneur’s use of probability and sports statistics in designing a game and in 
building a successful company based on it.

	 •	 Chapter 11 (Probability) covers the basics of probability, odds, and expected 
value. The chapter opener relates to the professions of weather forecaster, 
actuary, baseball manager, and corporate manager, applying probability, 
statistics, and expected value to interpreting forecasts, determining insur-
ance rates, selecting optimum strategies, and making business decisions. 
One When Will I Ever Use This? feature (p. 586) shows how a tree diagram 
helps a decision maker provide equal chances of winning to three players in 
a game of chance. A second such feature (p. 606) shows how knowledge of 
probability can help a television game show contestant determine the best 
winning strategy.

	 •	 Chapter 12 (Statistics) is an introduction to statistics that focuses on the mea-
sures of central tendency, dispersion, and position and discusses the normal dis-
tribution and its applications. The chapter opener and two When Will I Ever 
Use This? features (pp. 656, 661) connect probability and graph construction and 
interpretation to how a psychological therapist may motivate and carry out treat-
ment for alcohol and tobacco addiction.

	 •	 Chapter 13 (Personal Financial Management) provides the student with the 
basics of the mathematics of finance as applied to inflation, consumer debt, 
and house buying. We also include a section on investing, with emphasis on 
stocks, bonds, and mutual funds. Tables, examples, and exercises have been 
updated to reflect current interest rates and investment returns. New margin 
notes feature smart apps for financial calculations. Additions in response to 
reviewer requests include a When Will I Ever Use This? feature (p. 741) con-
necting several topics of the chapter to how a financial planner can provide 
comparisons between renting and buying a house, and exercises comparing 
different mortgage options. Another When Will I Ever Use This? feature  
(p. 732) explores the cost-effectiveness of solar energy, using chapter topics 
essential for a solar energy salesperson. The chapter opener connects the 
time value of money to how a financial planner can help clients make wise 
financial decisions.

	 •	 Chapter 14 (Graph Theory) covers the basic concepts of graph theory and its 
applications. The chapter opener shows how a writer can apply graph theory to 
the analysis of poetic rhyme. One When Will I Ever Use This? feature (p. 800) 
connects graph theory to how a postal or delivery service manager could deter-
mine the most efficient delivery routes. Another (p. 818) tells of a unique use by 
an entrepreneur who developed a business based on finding time-efficient ways 
to navigate theme parks.

	 •	 Chapter 15 (Voting and Apportionment) deals with issues in voting methods 
and apportionment of representation, topics that have become increasingly pop-
ular in liberal arts mathematics courses. The Adams method of apportionment, 
as well as the Huntington-Hill method (currently used in United States presi-
dential elections) are now included in the main body of the text. To illustrate the 
important work of a political consultant, the chapter opener connects different 
methods of analyzing votes. One When Will I Ever Use This? feature (p. 859) 
relates voting methods to the functioning of governing boards. Another (p. 874) 
gives an example of how understanding apportionment methods can help in the 
work of a school administrator.
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Course Outline Considerations
Chapters in the text are, in most cases, independent and may be covered in the 
order chosen by the instructor. The few exceptions are as follows:

	 •	 Chapter 6 contains some material dependent on the ideas found in Chapter 5.

	 •	 Chapter 6 should be covered before Chapter 7 if student background so dictates.

	 •	 Chapters 7 and 8 form an algebraic “package” and should be covered in sequen-
tial order.

	 •	 A thorough coverage of Chapter 11 depends on knowledge of Chapter 10 mate-
rial, although probability can be covered without teaching extensive counting 
methods by avoiding the more difficult exercises.

Features of the Thirteenth Edition
NEW! Chapter Openers    In keeping with the career theme, chapter openers 
address a situation related to a particular career. All are new to this edition. Some 
openers include a problem that the reader is asked to solve. We hope that you find 
these chapter openers useful and practical.

ENHANCED! Varied Exercise Sets    We continue to present a variety of 
exercises that integrate drill, conceptual, and applied problems, and there are 
over 1000 new or modified exercises in this edition. The text contains a wealth of 
exercises to provide students with opportunities to practice, apply, connect, and 
extend the mathematical skills they are learning. We have updated the exercises 
that focus on real-life data and have retained their titles for easy identification. 
Several chapters are enriched with new applications, particularly Chapters 6, 7, 8, 
11, 12, and 13. We continue to use graphs, tables, and charts when appropriate. 
Many of the graphs use a style similar to that seen by students in today’s print and 
electronic media.

UPDATED! Emphasis on Real Data in the Form of Graphs, Charts, and 
Tables  We continue to use up-to-date information from magazines, newspapers, 
and the Internet to create real applications that are relevant and meaningful.

Problem-Solving Strategies    Special paragraphs labeled “Problem-Solving 
Strategy” relate the discussion of problem-solving strategies to techniques that have 
been presented earlier.

For Further Thought  These entries encourage students to share their reasoning 
processes among themselves to gain a deeper understanding of key mathematical 
concepts.

ENHANCED! Margin Notes  This popular feature is a hallmark of this text and 
has been retained and updated where appropriate. These notes are interspersed 
throughout the text and are drawn from various sources, such as lives of mathemati-
cians, historical vignettes, anecdotes on mathematics textbooks of the past, newspa-
per and magazine articles, and current research in mathematics.

Optional Graphing Technology    We continue to provide sample graphing 
calculator screens to show how technology can be used to support results found 
analytically. It is not essential, however, that a student have a graphing calculator 
to study from this text. The technology component is optional.

NEW! Chapter Summaries  Extensive summaries at the end of each chapter 
include Key Terms, New Symbols with definitions, Test Your Word Power vocabu-
lary checks, and a Quick Review that provides a brief summary of concepts (with 
examples) covered in the chapter.

Chapter Tests  Each chapter concludes with a chapter test so that students can 
check their mastery of the material.
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Resources For Success
	   Online Course (access code required)

MyMathLab delivers proven results in helping individual students succeed. It provides engaging experiences 
that personalize, stimulate, and measure learning for each student. And it comes from an experienced 
partner with educational expertise and an eye on the future. MyMathLab helps prepare students and gets 
them thinking more conceptually and visually through the following features:

Skills for Success Modules are integrated within the MyMathLab course to help 
students succeed in college courses and prepare for future professions.

	Interactive Concept Videos 
NEW! Conceptual videos require students’ input as they walk  
students through a concept and pause to ask them questions. 
Correct answers are followed by reinforcement of  the concept. 
Incorrect answers are followed by a video that explains the correct 
answer, as well as addressing the misconception that may have led to 
that particular mistake. Instructors can also assign trackable exercises 
that correspond to the videos to check student understanding.

	Adaptive Study Plan  
The Study Plan makes studying more  
efficient and effective for every student.  
Performance and activity are assessed  
continually in real time. Then data and  
analytics are used to provide personalized 
content-reinforcing concepts that target each 
student’s strengths and weaknesses.

Personalized Homework 
Attaching a personalized homework 
assignment to a quiz or test enables 
students to focus on the topics they 
did not master and those with which 
they need additional practice, providing 
an individualized experience.

Learning Catalytics 
NEW! Integrated into MyMathLab, the 
Learning Catalytics feature uses students’ 
devices in the classroom for an engagement, 
assessment, and classroom intelligence sys-
tem that gives instructors real-time feedback 
on student learning.



Instructor Resources
Additional resources can be downloaded from  
www.pearsonhighered.com or hardcopy resources can 
be ordered from your sales representative.

Integrated Review Ready to Go 
MyMathLab® Course
The Ready to Go MyMathLab course option makes  
it even easier to get started, including author-chosen  
preassigned homework, integrated review of  prerequisite 
topics, and more.

TestGen®

TestGen® (www.pearsoned.com/testgen) enables 
instructors to build, edit, print, and administer tests using 
a computerized bank of  questions developed to cover all 
the objectives of  the text.

PowerPoint® Lecture Slides
Fully editable slides correlated with the textbook are 
available.

Annotated Instructor’s Edition
When possible, answers are on the page with the  
exercises. Longer answers are in the back of  the book.

Instructor’s Resource and Solutions 
Manual
This manual includes fully worked solutions to all text 
exercises, as well as the Collaborative Investigations that 
were formerly in the text.

Instructor’s Testing Manual
This manual includes tests with answer keys for each 
chapter of  the text.

Student Resources
Additional resources are available to support student  
success.

Updated Video Program
Available in MyMathLab, video lectures cover every section 
in the text and have been updated for this edition where 
necessary. New interactive concept videos and new “When 
Will I Ever Use This?” videos complete the video package, 
reinforcing students’ conceptual understanding, while also 
engaging them with the math in context.

Student Solutions Manual
This manual provides detailed worked-out solutions to 
odd-numbered exercises.

Integrated Review Worksheets
Intended to be used with the Integrated Review  
MyMathLab course, these worksheets give students an 
opportunity to review and practice prerequisite topics from 
developmental math that are needed for each chapter in 
Mathematical ldeas.

www.pearsonhighered.com
www.pearsoned.com/testgen
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Professor Terry Krieger, of Rochester (Minnesota) 
Community College, shares his thoughts about why 
he decided to become a mathematics teacher. He is an 
expert at the Rubik’s Cube. Here, he explains how he 
mastered this classic problem.

From a very young age I always enjoyed solving problems, 
especially problems involving numbers and patterns. 
There is something inherently beautiful in the process 
of discovering mathematical truth. Mathematics may be 
the only discipline in which different people, using wildly 
varied but logically sound methods, will arrive at the same 
correct result—not just once, but every time! It is this aspect 
of mathematics that led me to my career as an educator. As 
a mathematics instructor, I get to be part of, and sometimes 
guide, the discovery process.

I received a Rubik’s Cube as a gift my junior year of high  
school. I was fascinated by it. I devoted the better part of three 
months to solving it for the first time, sometimes working 3 or  
4 hours per day on it.

	 1.1	 Solving Problems by  
Inductive Reasoning

	 1.2	 An Application of Inductive  
Reasoning:  Number  
Patterns

	 1.3	 Strategies for Problem 
Solving

	 1.4	 Numeracy in Today’s World

Chapter 1 Summary

Chapter 1 Test

The Art  
of Problem 
Solving

1



2      CHAPTER 1   The Art of Problem Solving

There was a lot of trial and error involved. I devised a process that 
allowed me to move only a small number of pieces at a time while  
keeping other pieces in their places. Most of my moves affect only three 
or four of the 26 unique pieces of the puzzle. What sets my solution 
apart from those found in many books is that I hold the cube in a consis-
tent position and work from the top to the bottom. Most book solutions 
work upward from the bottom.

My first breakthrough came when I realized that getting a single color on 
one face of the cube was not helpful if the colors along the edges of that 
face were placed improperly. In other words, it does no good to make the 
top of the cube all white if one of the edges along the white top shows 
green, yellow, and blue. It needs to be all green, for example.

I worked on the solution so much that I started seeing cube moves in my 
sleep. In fact, I figured out the moves for one of my most frustrating stick-
ing points while sleeping. I just woke up knowing how to do it.

The eight corners of the cube represented a particularly difficult challenge 
for me. Finding a consistent method for placing the corners appropriately 
took many, many hours. To this day, the amount of time that it takes for 
me to solve a scrambled cube depends largely on the amount of time that 
it takes for me to place the corners.

When I first honed my technique, I was able to consistently solve the cube  
in 2 to 3 minutes. My average time is now about 65 seconds. My fastest  
time is 42 seconds.

Since figuring out how to solve the cube, I have experimented with other 
possible color patterns that can be formed. The most complicated one  
I have created leaves the cube with three different color stripes on all  
six faces. I have never met another person who can accomplish this 
arrangement.

Characteristics of Inductive and Deductive Reasoning
The development of mathematics can be traced to the Egyptian and Babylonian  
cultures (3000 b.c.–a.d. 260) as a necessity for counting and problem solving. To 
solve a problem, a cookbook-like recipe was given, and it was followed repeat-
edly to solve similar problems. By observing that a specific method worked for a  
certain type of problem, the Babylonians and the Egyptians concluded that the 
same method would work for any similar type of problem. Such a conclusion is 
called a conjecture. A conjecture is an educated guess based on repeated observa-
tions of a particular process or pattern. 

The method of reasoning just described is called inductive reasoning.

SOLVinG PrOBLeMs BY IndUctiVe ReasOninG1.1

OBJectiVes
	 1	 Be able to distinguish 

between inductive and 
deductive reasoning.

	 2	 Understand that in 
some cases, inductive 
reasoning may not lead 
to valid conclusions.

IndUctiVe ReasOninG

Inductive reasoning is characterized by drawing a general conclusion (mak-
ing a conjecture) from repeated observations of specific examples. The con-
jecture may or may not be true.
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In testing a conjecture obtained by inductive reasoning, it takes only one exam-
ple that does not work to prove the conjecture false. Such an example is called a 
counterexample.

Inductive reasoning provides a powerful method of drawing conclusions, but 
there is no assurance that the observed conjecture will always be true. For this 
reason, mathematicians are reluctant to accept a conjecture as an absolute truth 
until it is formally proved using methods of deductive reasoning. Deductive reason-
ing characterized the development and approach of Greek mathematics, as seen 
in the works of Euclid, Pythagoras, Archimedes, and others. During the classical 
Greek period (600 b.c.–a.d. 450), general concepts were applied to specific prob-
lems, resulting in a structured, logical development of mathematics.

DedUctiVe ReasOninG

Deductive reasoning is characterized by applying general principles to spe-
cific examples.

We now look at examples of these two types of reasoning. In this chapter, we 
often refer to the natural, or counting, numbers.

1, 2, 3,N Natural (counting) numbers 

	
	 Ellipsis points

The three dots (ellipsis points) indicate that the numbers continue indefinitely 
in the pattern that has been established. The most probable rule for continuing 
this pattern is “Add 1 to the previous number,” and this is indeed the rule that 
we follow.

Now consider the following list of natural numbers:

2, 9, 16, 23, 30.

What is the next number of this list? What is the pattern? After studying the num-
bers, we might see that 2 + 7 = 9, and 9 + 7 = 16. Do we add 16 and 7 to get 23? 
Do we add 23 and 7 to get 30? Yes. It seems that any number in the given list can 
be found by adding 7 to the preceding number, so the next number in the list would 
be 30 + 7 = 37.

We set out to find the “next number” by reasoning from observation of the 
numbers in the list. We may have jumped from these observations to the general 
statement that any number in the list is 7 more than the preceding number. This is 
an example of inductive reasoning.

By using inductive reasoning, we concluded that 37 was the next number. 
Suppose the person making up the list has another answer in mind. The list of 
numbers

2, 9, 16, 23, 30

actually gives the dates of Mondays in June if June 1 falls on a Sunday. The next 
Monday after June 30 is July 7.  With this pattern, the list continues as

2, 9, 16, 23, 30, 7, 14, 21, 28, c.

See the calendar in Figure 1. The correct answer would then be 7.  The process 
used to obtain the rule “add 7” in the preceding list reveals a main flaw of inductive 
reasoning. We can never be sure that what is true in a specific case will be true in 
general. Inductive reasoning does not guarantee a true result, but it does provide 
a means of making a conjecture.Figure 1

June

S M Tu W Th F S

1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30

July

S M Tu W Th F S

1 2 3 4 5

6 7 8 9 10 11 12

13 14 15 16 17 18 19

20 21 22 23 24

29 30 31

25 26

27 28
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EXpOnentiaL EXpressiOn

If a is a number and n is a counting number 11, 2, 3, c2, then the exponen-
tial expression an is defined as follows.

an = a # a # a # N # a
	

(11111)11111*
	 n factors of a

The number a is the base and n is the exponent.

With deductive reasoning, we use general statements and apply them to spe-
cific situations. For example, a basic rule for converting feet to inches is to multiply 
the number of feet by 12 in order to obtain the equivalent number of inches. This 
can be expressed as a formula.

Number of inches =  12 * number of feet

This general rule can be applied to any specific case. For example, the number of 
inches in 3 feet is 12 * 3 = 36 inches.

Reasoning through a problem usually requires certain premises. A premise can 
be an assumption, law, rule, widely held idea, or observation. Then reason induc-
tively or deductively from the premises to obtain a conclusion. The premises and 
conclusion make up a logical argument.

EXaMpLe 1	 Identifying Premises and Conclusions

Identify each premise and the conclusion in each of the following arguments. Then 
tell whether each argument is an example of inductive or deductive reasoning.

(a)	 Our house is made of brick. Both of my next-door neighbors have brick houses. 
Therefore, all houses in our neighborhood are made of brick.

(b)	 All keyboards have the symbol @. I have a keyboard. My keyboard has the 
symbol @.

(c)	 Today is Tuesday.  Tomorrow will be Wednesday.

Solution

(a)	 The premises are  “Our house is made of brick” and  “Both of my next-door 
neighbors have brick houses.”  The conclusion is  “Therefore, all houses in our 
neighborhood are made of brick.”  Because the reasoning goes from specif-
ic examples to a general statement, the argument is an example of inductive 
reasoning (although it may very well be faulty).

(b)	 Here the premises are “All keyboards have the symbol @” and “I have a key-
board.”  The conclusion is  “My keyboard has the symbol @.”  This reasoning 
goes from general to specific, so deductive reasoning was used.

(c)	 There is only one premise here,  “Today is Tuesday.”  The conclusion is  “To-
morrow will be Wednesday.”  The fact that Wednesday immediately follows 
Tuesday is being used, even though this fact is not explicitly stated. Because the 
conclusion comes from general facts that apply to this special case, deductive 
reasoning was used.	

We now review some basic notation. Throughout this book, we use exponents 
to represent repeated multiplication.

Base  43 = 4 # 4 # 4 = 64 4 is used as a factor 3 times.

	
	 Exponent
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While inductive reasoning may, at times, lead to false conclusions, in many 
cases it does provide correct results if we look for the most probable answer.

EXaMpLe 3	 Predicting the Product of Two Numbers

Consider the list of equations. Predict the next multiplication fact in the list.

 37 * 3 = 111

 37 * 6 = 222

 37 * 9 = 333

 37 * 12 = 444

Solution

The left side of each equation has two factors, the first 37 and the second a multiple 
of 3, beginning with 3. Each product (answer) consists of three digits, all the same, 
beginning with 111 for 37 * 3. Thus, the next multiplication fact would be

	 37 * 15 = 555,  which is indeed true.	

Pitfalls of Inductive Reasoning
There are pitfalls associated with inductive reasoning. A classic example involves 
the maximum number of regions formed when chords are constructed in a circle. 
When two points on a circle are joined with a line segment, a chord is formed.

Locate a single point on a circle. Because no chords are formed, a single interior 
region is formed. See Figure 2(a) on the next page. Locate two points and draw 
a chord. Two interior regions are formed, as shown in Figure 2(b). Continue this 
pattern. Locate three points, and draw all possible chords. Four interior regions 
are formed, as shown in Figure 2(c). Four points yield 8 regions and five points 
yield 16 regions. See Figures 2(d) and 2(e).

The results of the preceding observations are summarized in Table 1. The pat-
tern formed in the column headed “Number of Regions” is the same one we saw in 
Example 2(c), where we predicted that the next number would be 64. It seems here 
that for each additional point on the circle, the number of regions doubles.

EXaMpLe 2	 Predicting the Next Number in a Sequence

Use inductive reasoning to determine the probable next number in each list below.

(a)	 5, 9, 13, 17, 21, 25, 29  (b)  1, 1, 2, 3, 5, 8, 13, 21  (c)  2, 4, 8, 16, 32

Solution

(a)	 Each number in the list is obtained by adding 4 to the previous number. The 
probable next number is 29 + 4 = 33. (This is an example of an arithmetic 
sequence.)

(b)	 Beginning with the third number in the list, 2, each number is obtained by add-
ing the two previous numbers in the list. That is,

1 + 1 = 2,  1 + 2 = 3,  2 + 3 = 5,

		 and so on. The probable next number in the list is 13 + 21 = 34. (These are the 
first few terms of the Fibonacci sequence.)

(c)	 It appears here that to obtain each number after the first, we must double the 
previous number. Therefore, the probable next number is 32 * 2 = 64. (This is 
an example of a geometric sequence.)	

In the 2003 movie A Wrinkle in Time, 
young Charles Wallace, played by David 
Dorfman, is challenged to identify a 
particular sequence of numbers. He 
correctly identifies it as the Fibonacci 
sequence.

The Fibonacci Sequence

8,
3, 5,

2,1,1,

13,
21,

…

Table 1 

Number of 
Points

Number of 
Regions

1   1

2   2

3   4

4   8

5 16
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A reasonable inductive conjecture would be that for six points, 32 regions 
would be formed. But as Figure 3 indicates, there are only 31 regions. The pattern 
of doubling ends when the sixth point is considered. Adding a seventh point would 
yield 57 regions. The numbers obtained here are

1, 2, 4, 8, 16, 31, 57.

For n points on the circle, the number of regions is given by the formula

n4 - 6n3 + 23n2 - 18n + 24
24

  .
*

*For more information on this and other similar patterns, see “Counting Pizza Pieces and Other Com-
binatorial Problems,” by Eugene Maier, in the January 1988 issue of Mathematics Teacher, pp. 22–26.

1.1	 EXercises

In Exercises 1–16, determine whether the reasoning is an 
example of deductive or inductive reasoning.

	 1.	 The next number in the pattern 2, 4, 6, 8, 10 is 12.

	 2.	 My dog barked and woke me up at 1:02 a.m., 2:03 a.m., 
and 3:04 a.m. So he will bark again and wake me up at 
4:05 a.m.

	 3.	 To find the perimeter P of a square with side of length 
s, I can use the formula P = 4s. So the perimeter of a 
square with side of length 7 inches is 4 * 7 = 28 inches.

	 4.	 A company charges a 10% re-stocking fee for return-
ing an item. So when I return a radio that cost $150, I 
will only get $135 back.

	 5.	 If the mechanic says that it will take seven days to 
repair your SUV, then it will actually take ten days. The 
mechanic says, “I figure it’ll take exactly one week to fix 
it, ma’am.” Then you can expect it to be ready ten days 
from now.

	 6.	 If you take your medicine, you’ll feel a lot better. You 
take your medicine. Therefore, you’ll feel a lot better.

	 7.	 It has rained every day for the past six days, and it is 
raining today as well. So it will also rain tomorrow.

	 8.	 Carrie’s first five children were boys. If she has another 
baby, it will be a boy.

	 9.	 The 2000 movie Cast Away stars Tom Hanks as the only 
human survivor of a plane crash, stranded on a tropi-
cal island. He approximates his distance from where the 
plane lost radio contact to be 400 miles (a radius), and 
uses the formula for the area of a circle, 

Area = p (radius)2 

		  to determine that a search party would have to cover 
an area of over 500,000 square miles to look for him 
and his “pal” Wilson.

Figure 2
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	17.	 Discuss the differences between inductive and deductive 
reasoning. Give an example of each.

	18.	Give an example of faulty inductive reasoning.

Determine the most probable next term in each of the follow-
ing lists of numbers.

	19.	 6, 9, 12, 15, 18 	 20.	 13, 18, 23, 28, 33

	21.	 3, 12, 48, 192, 768 	 22.	 32, 16, 8, 4, 2

	23.	3, 6, 9, 15, 24, 39 	 24.	
1
3

, 
3
5

, 
5
7

, 
7
9

, 
9
11

	25.	
1
2

, 
3
4

, 
5
6

, 
7
8

, 
9
10

	 26.	 1, 4, 9, 16, 25

	10.	 If the same number is subtracted from both sides of a 
true equation, the new equation is also true. I know 
that 9 + 18 = 27.  Therefore, 19 + 182 - 13 = 27 - 13. 

	11.	If you build it, they will come. You build it. Therefore, 
they will come.

	12.	All men are mortal. Socrates is a man. Therefore, 
Socrates is mortal.

	13.	It is a fact that every student who ever attended Delgado 
University was accepted into graduate school. Because 
I am attending Delgado, I can expect to be accepted to 
graduate school, too.

	14.	For the past 126 years, a rare plant has bloomed in 
Columbia each summer, alternating between yellow 
and green flowers. Last summer, it bloomed with 
green flowers, so this summer it will bloom with yellow 
flowers. 

	15.	In the sequence 5, 10, 15, 20, 25, c, the most probable 
next number is 30.

	16.	 (This anecdote is adapted from a story by Howard 
Eves in In Mathematical Circles.) A scientist had a 
group of 100 fleas, and one by one he would tell each 
flea “Jump,” and the flea would jump. Then with the 
same fleas, he yanked off their hind legs and repeated 
“Jump,” but the fleas would not jump. He concluded 
that when a flea has its hind legs yanked off, it cannot 
hear.

	36.	  11 * 92 + 2 = 11

		   112 * 92 + 3 = 111

		   1123 * 92 + 4 = 1111

		   11234 * 92 + 5 = 11,111
		

	37.  3367 * 3 = 10,101

		   3367 * 6 = 20,202

		   3367 * 9 = 30,303

		   3367 * 12 = 40,404
		

	38.	  15873 * 7 = 111,111

		   15873 * 14 = 222,222

		   15873 * 21 = 333,333

		   15873 * 28 = 444,444

	39.	  34 * 34 = 1156
		   334 * 334 = 111,556
		   3334 * 3334 = 11,115,556

 
	40.	  11 * 11 = 121
		   111 * 111 = 12,321
		   1111 * 1111 = 1, 234, 321

	41.	  3 =
3122

2

		   3 + 6 =
6132

2

		   3 + 6 + 9 =
9142

2

		   3 + 6 + 9 + 12 =
12152

2
 

	42.	  2 = 4 - 2

		   2 + 4 = 8 - 2

		   2 + 4 + 8 = 16 - 2

		   2 + 4 + 8 + 16 = 32 - 2  

		   
	43.	  5162 = 616 - 12
		   5162 + 51362 = 6136 - 12
		   5162 + 51362 + 512162 = 61216 - 12
		   5162 + 51362 + 512162 + 5112962 = 611296 - 12

	27.	 1, 8, 27, 64, 125 	 28.	 2, 6, 12, 20, 30, 42

	29.	 4, 7, 12, 19, 28, 39 	 30.	 27,  21, 16, 12, 9

	31.	 5, 3, 5, 5, 3, 5, 5, 5, 3, 5, 5, 5, 5, 3, 5, 5, 5, 5

	32.	8, 2, 8, 2, 2, 8, 2, 2, 2, 8, 2, 2, 2, 2, 8, 2, 2, 2, 2

	33.	Construct a list of numbers similar to those in Exer-
cise 19 such that the most probable next number in the 
list is 60.

	34.	Construct a list of numbers similar to those in Exer-
cise 30 such that the most probable next number in the 
list is 8.

Use the list of equations and inductive reasoning to predict 
the next equation, and then verify your conjecture.

	35.  19 * 92 + 7 = 88

		   198 * 92 + 6 = 888

		   1987 * 92 + 5 = 8888

		   19876 * 92 + 4 = 88,888 
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	44.	  3 =
313 - 12

2

		   3 + 9 =
319 - 12

2

		   3 + 9 + 27 =
3127 - 12

2

		   3 + 9 + 27 + 81 =
3181 - 12

2

	45.	  
1
2
= 1 -

1
2

		   
1
2

+
1
4
= 1 -

1
4

		
1
2

+
1
4

+
1
8
= 1 -

1
8

		   
1
2

+
1
4

+
1
8

+
1
16

= 1 -
1
16

	46.	  
1

1 # 2
=

1
2

		   
1

1 # 2
+

1
2 # 3

=
2
3

		   
1

1 # 2
+

1
2 # 3

+
1

3 # 4
=

3
4

		   
1

1 # 2
+

1
2 # 3

+
1

3 # 4
+

1
4 # 5

=
4
5

Legend has it that the great mathematician Carl Friedrich 
Gauss (1777–1855) at a very young age was told by his 
teacher to find the sum of the first 100 counting numbers. 
While his classmates toiled at the problem, Carl simply 
wrote down a single number and handed the correct answer 
in to his teacher. The young Carl explained that he observed 
that there were 50 pairs of numbers that each added up to 
101. (See below.) So the sum of all the numbers must be 
50 * 101 = 5050.

1  +  2  +  3  +  g  +  98  +  99  +  100
101

101

101

50 sums of 101 = 50 : 101 = 5050

Use the method of Gauss to find each sum.

	47.	 1 + 2 + 3 + g + 200 

	50.	1 + 2 + 3 + g + 2000  

	52.	Explain in your own words how the procedure of Gauss 
can be modified to find the sum 1 + 2 + 3 + g + n, 
where n is an odd natural number. (When an odd natu-
ral number is divided by 2, it leaves a remainder of 1.) 

	53.	 Modify the procedure of Gauss to find the sum 
2 + 4 + 6 + g + 100. 

	54.	Use the result of Exercise 53 to find the sum 
4 + 8 + 12 + g + 200.

	55.	What is the most probable next number in this list?

12, 1, 1, 1, 2, 1, 3

		  (Hint:  Think about a clock with chimes.)

	56.	What is the next term in this list?

O, T, T, F, F, S, S, E, N, T

		  (Hint:  Think about words and their relationship to 
numbers.)

	57.	 Choose any three-digit number with all different digits, 
and follow these steps.

(a)	 Reverse the digits, and subtract the smaller from 
the larger. Record your result.

(b)	 Choose another three-digit number and repeat 
this process. Do this as many times as it takes for 
you to see a pattern in the different results you 
obtain. (Hint:  What is the middle digit? What is 
the sum of the first and third digits?)

(c)	 Write an explanation of this pattern.

	58.	Choose any number, and follow these steps.

(a)	 Multiply by 2.	 (b)	 Add 6.

	48.	1 + 2 + 3 + g + 400  

(c)	 Divide by 2.	

(e)	 Record your result.

	� Repeat the process, except in Step (b), add 8. Record 
your final result. Repeat the process once more, 
except in Step (b), add 10. Record your final result.

(f)	 Observe what you have done. Then use inductive rea-
soning to explain how to predict the final result.  

	59.	 Complete the following.

142,857 * 1 =     	 142,857 * 2 =     
142,857 * 3 =     	 142,857 * 4 =     
142,857 * 5 =     	 142,857 * 6 =     

		  What pattern exists in the successive answers? Now 
multiply 142,857 by 7 to obtain an interesting result.

	60.	 Refer to Figures 2(b)–(e) and Figure 3. Instead of count-
ing interior regions of the circle, count the chords formed. 
Use inductive reasoning to predict the number of chords 
that would be formed if seven points were used.

(d)  �Subtract the number you 
started with.

	49.	 1 + 2 + 3 + g + 800  

	51.	 Modify the procedure of Gauss to find the sum 
1 + 2 + 3 + g + 175. 
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Number Sequences
An ordered list of numbers such as

3, 9, 15, 21, 27, c

is called a sequence. A number sequence is a list of numbers having a first number, 
a second number, a third number, and so on, called the terms of the sequence.

The sequence that begins

5, 9, 13, 17, 21, c

is an arithmetic sequence, or arithmetic progression. In an arithmetic sequence, 
each term after the first is obtained by adding the same number, called the com-
mon difference, to the preceding term. To find the common difference, choose any 
term after the first and subtract from it the preceding term. If we choose 9 - 5 (the 
second term minus the first term), for example, we see that the common difference 
is 4. To find the term following 21, we add 4 to get 21 + 4 = 25.

The sequence that begins

2, 4, 8, 16, 32, c

is a geometric sequence, or geometric progression. In a geometric sequence, each 
term after the first is obtained by multiplying the preceding term by the same num-
ber, called the common ratio. To find the common ratio, choose any term after the 
first and divide it by the preceding term. If we choose 

4
2 (the second term divided 

by the first term), for example, we see that the common ratio is 2. To find the term 
following 32, we multiply by 2 to get 32 # 2 = 64.

An AppLicatiOn Of IndUctiVe ReasOninG: NUMBer Patterns1.2

OBJectiVes
	 1	 Be able to recognize 

arithmetic and 
geometric sequences.

	 2	 Be able to apply the 
method of successive 
differences to predict 
the next term in a 
sequence.

	 3	 Be able to recognize 
number patterns.

	 4	 Be able to use sum 
formulas.

	 5	 Be able to recognize 
triangular, square, and 
pentagonal numbers.

EXaMpLe 1	 Identifying Arithmetic and Geometric Sequences

For each sequence, determine if it is an arithmetic sequence, a geometric 
sequence, or neither. If it is either arithmetic or geometric, give the next term in 
the sequence.

(a)	 5, 10, 15, 20, 25, c (b)  3, 12, 48, 192, 768, c (c)  1, 4, 9, 16, 25, c

Solution

(a)	 If we choose any term after the first term, and subtract the preceding term, we 
find that the common difference is 5.

10 - 5 = 5  15 - 10 = 5  20 - 15 = 5  25 - 20 = 5

	 Therefore, this is an arithmetic sequence. The next term in the sequence is

25 + 5 = 30.

(b)	 If any term after the first is multiplied by 4, the following term is obtained.

12
3

= 4  
48
12

= 4  
192
48

= 4  
768
192

= 4

	 Therefore, this is a geometric sequence. The next term in the sequence is

768 # 4 = 3072.

(c)	 Although there is a pattern here (the terms are the squares of the first five 
counting numbers), there is neither a common difference nor a common ratio. 
This is neither an arithmetic nor a geometric sequence.	




